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Abstract

When cryptographic algorithms are executed in hostile environments,
a straightforward implementation is insecure as the key can be read di-
rectly from memory. White-box cryptography aims to provide secure
implementations even when the attacker has full control over the exe-
cution environment. In this paper we look at the theory and practice
of a white-box AES implementation and demonstrate an application in
which we replace a hardware key (dongle) with a software only white-
box to check a software license.

1 Introduction

Modern cryptographic algorithms, such as AES, (Triple-)DES and RSA, are
created to protect a certain message, or plain text, by encrypting it into a
so called cipher text. These algorithms are designed to act like a black-box:
the attacker has access to the inputs and outputs of the algorithm, but cannot
observe or influence the computation. An example of this situation is an email:
The attacker does not see what happens on the computers that send or receive
the message, he can only listen at a router in between.

In practice however a cryptographic module is more like a grey-box: an
attacker can get side channel information or even influence the computation.
An example of a grey-box is a smart card. An attacker can measure informa-
tion on, for instance, the power consumption or the timing of the execution.
He can even inject faults by targeting specialized lasers on circuits of a chip.
These kind of side channel attacks can potentially be used to gain knowledge
about the used key [12, 13, 14, 15]. The safety of practical applications often
does not only depend on the algorithm, but also on its implementation.



This leads us to the topic of this paper: white-box cryptography. In the
white-box attack context an attacker can observe and modify every step in the
computation. The classical example of this situation is digital rights manage-
ment (DRM), where the end-user itself has incentives to break the protection
of his media while having access to a decompiler or a debugger.

Another example of the white-box attack context is a mobile phone. Trends
in payment move rapidly from paying with a smart card to paying with a
mobile phone. Not all phones have a secure element (chip), or the access to
the secure element is not restricted to the banking app only. This led to our
internship project at UL Transaction Security (UL TS) where we want to find
out what white-box cryptography is, how secure it is and for what applications
it can be used.

To study the implementation of cryptographic algorithms in the white-box
attack context we will look at the implementation as proposed by Chow et
al. [2] in section 2. In section 3 we present a proof of concept for UL TS in
which we seek to replace a (hardware) dongle with a white-box implementation
to protect licensed software. In section 4 we will look at possible attacks on
this demo and the white-box implementation in general. Afterwards we will
evaluate some applications of white-box cryptography in practice in section 5
and finally we conclude in section 6.

2 The Chow et al. implementation

2.1 Introduction on white-box literature

In 2002 Chow, Eisen, Johnson and van Oorschot introduced the concept of
white-box cryptography in their papers that proposed an implementation of
DES [3] and AES [2] (see also Muir’s tutorial [1]). Their technique of imple-
menting a cryptographic algorithm as a network of encoded lookup tables is
the standard way of creating a safe white-box implementation of a block ci-
pher. Although they have been broken (by Wyseur et al. [5] (DES) and Billet
et al. [4] (AES)), new ideas to mitigate the weaknesses have risen [16, 18, 20]
and are broken again [17, 19, 21], these techniques are still the state of the art
in the public literature.

In the rest of this section we will show the technical details on the white-box
AES version. We chose AES over DES for several reasons. First of all because
of the mathematical nature of AES as opposed to the statical nature of DES,
secondly because AES is more durable than (Triple-) DES and lastly because
AES is almost always used in practice (the size of an AES implementation



is more than 4 times as small as a Triple DES implementation) [3, 2]. We
implement AES with a 128 bits key, but we could implement AES with other
key sizes in a similar way.

2.2 Constructing a table based AES

The goal of 'white-boxing’ a cryptographic algorithm is to make the imple-
mentation as strong as a black-box. One way of doing this is to create a
lookup table that for every possible input block gives the corresponding out-
put block. This is not possible of course, as that table would be approximately
5x10% GB large (2'?® - 16 bytes). However, we can represent AES as a series
of smaller lookup tables. Note that the key will be hard-wired in these lookup
tables. This is a good thing, because the white-box algorithm is supposed to
run securely on compromised platforms and therefore the key should never be
present in memory. We will show how we implement AES using only lookup
tables and then we will show how to protect these tables with internal and
external encodings. But first we will give a modified description of AES.

2.2.1 Moving the Shift Rows operation

To implement AES as a series of lookup tables we use the alternative AES
description on the right side of table 1. This description is equivalent to the
traditional AES description on the left, but has the nice property that the
ShiftRows operation is at the front. To get to this alternative description
we move the first AddRoundKey in to the for loop and move the ninth Ad-
dRoundKey out of the for loop. This does not influence the result of the
AES computation. Likewise we swap the ShiftRows and SubBytes operations
and then the ShiftRows and the AddRoundKey operations (after modifying
the round key by applying ShiftRows to it) while we keep the resulting AES
computation unchanged.

2.2.2 An initial idea

Lets ignore the MixColumns operation for now. To immplement AES without
the MixColumns operation, we can create lookup tables T, . that map one
byte of the state matrix of round r, to a byte of the state matrix of round
7+ 1. This is displayed in figure 1. Such a (lookup) table 77}, . consists of the
shifted AddRoundKey operation and the SubBytes operation. The ShiftRows
operation is applied by choosing which byte of the state matrix goes to which

table (and therefore to which byte of the resulting state matrix). This is the



state < plaintext state < plaintext

ADDROUNDKEY (state, ko) forr=1to9do

for r=1to 9 do SHIFTROWS(state)
SUBBYTES(state) ADDROUNDKEY (state, ShiftRows(k,_1))
SHIFTROWS(state) SUBBYTES(state)
MixCOLUMNS(state) Mi1xCOLUMNS(state)
ADDROUNDKEY (state, k) end for

end for SHIFTROWS(state)

SUBBYTES(state) ADDROUNDKEY (state, ShiftRows(ko))

SHIFTROWS(state) SUBBYTES(state)

ADDROUNDKEY (state, k1) ADDROUNDKEY (state, k1)

ciphertext < state ciphertext < state

Table 1: Two ways to describe AES

reason why we use the AES description with the ShiftRows operation in the
front.

Of course, we do not know the value of the state matrix in advance, so we
store the outcome of these operations for all possible values of a byte:

Vb e {0,...,255} : T, (b) = SubBytes(AddRoundKey’, , . (b)),

7y77‘

where AddRoundKey), , .(b) =b@® k.(ShiftRows(z,y)).

Notice that we now can compute the same result as a normal AES imple-
mentation without the MixColumns operation, but the key bytes are never
present in memory. The only things that are visible during execution are the
inputs and outputs to the lookup tables.
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Figure 1: Tables that map one byte of the state matrix to another.



2.2.3 The actual tables

Although this works for the last round (with the addition of an extra Ad-
dRoundKey operation), this does not work for the first 9 rounds. This is
because the output of the MixColumns operation does not depend on one
input byte, but on all the bytes in the same column.

Let bg, by, by, b be result of applying the shifted AddRoundKey and Sub-
Bytes operations to the first, sixth, eleventh and sixteenth byte of the state
matrix as input to a round r. These bytes form, after the ShiftRows operation,
the first column of the state matrix before the MixColumns operation.

Applying the MixColumns operation gives the following equation:

02 03 01 01 bo 02 03 01 01
01 02 03 01 b | _ | 0 ® b 02 o b 03 o b 01
01 01 02 03 by o1 o1 o1 2 02 31 03
03 01 01 02 bs 03 01 01 02

This means that we can split up a matrix multiplication into 4 vector multi-
plications and 3 XOR operations. Each vector multiplication depends only on
one byte of the input. So if we define

meo(bo) = bo - (02,01,01,03)7
mcl(bl) = bl : (03, 02, 01, Ol)T
mCQ(b2> = bg . (0]., 03, 02, Ol)T
m03(b3) = bg . (01, 01, 03, 02)T

then it follows that state.,, = mco(bo) ® mcy(by) & mea(be) & mes(bs).

We now have come to the point where we can create tables Ty, . that
receive only one byte as input and that outputs the four bytes of the matrix
multiplication with this byte. Each of these tables represents first applying the
shifted AddRoundKey operation, then the SubBytes operation, and finally a
multiplication with a row vector of the MixColumns matrix. Again, we store
the outcome of these operations for all possible values of a byte:

vb e {0,...,255} : Ty, . (b) = me,(SubBytes(AddRoundKey, , . _(b))).

To calculate the resulting state bytes we need to apply a XOR operation,
which we can also implement with a table: XOR*(bg,b1) = by @ b;. To save
space the XOR* table does not map two bytes to a byte, but it maps two
nibbles (four bits) to a nibble.

Right now one XOR* table will satisfy, however, in the next section we
will add encodings to protect the tables. Therefore we use six XOR* tables
for each T'y* table.



The last round of AES does not have a MixColumns operation, so we can
use the tables from the previous paragraph (but with an additional AddRound-
Key operation):

Vb € {0,...,255} : T, (b) = AddRoundKey, , ,o(SubBytes(AddRoundKey’, , 4(b))).

As a summary, the flow of one byte through the network of tables repre-
senting all the AES rounds is depicted in figure 2.
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Figure 2: The flow of a byte through the table-network.

2.3 Protecting the tables

We want to protect the table network by applying encodings and Mixing Bi-
jections. Even though the table network from the previous paragraph allows
computing the AES rounds without ever having key bytes appear in memory,
the key is quite easy to recover from these tables.

To extract the key from this table network an attacker could input zeros
to the first round (consisting of Ty* and XOR* tables) and then undo the
MixColumns and SubBytes by giving that result as input to a MixColumns
inverse, the SubBytes inverse and the ShiftRows inverse. The result of this
computation is AddRoundK ey(0, ko), which outputs the AES key.

Another way an attacker could get the key is to brute force a table: since a
Ty* table only depends on a single byte of the round key, the attacker can just
create up to 256 of such tables, one for every possible byte of the key, until it
is equal to the Ty* table in the code. The byte used to create this table is the
byte of the key.



2.3.1 Internal encodings

To protect the tables we apply random bijections to the computation and
cancel the bijection in the next table. Consider three tables A, B and C'. The
protected versions of these tables become A’ = fo A, B’ = go Bo f~! and
C' = Cog™!, where f and g are randomly chosen bijective functions.! Even
though the tables have changed, the resulting computation of the three tables
does not change, because each encoding cancels out in the next table:

C"oB'oA' =(Cog')o(goBofl)o(foA)=CoBoA

We use this trick to encode all our tables. Because the input and output of
the XOR* tables are nibbles, and not bytes, we use two encodings per table
(and two inverses from the previous table). One encoding for the first four
bits, and the other encoding for the last four bits. We create such an encoding
by filling an array with values from 0 to 15 (this is a 4-bit identity S-box) and
then shuffling that array.

A summary of the resulting network is shown in figure 3.2
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Figure 3: The flow of a byte through the table-network with encodings.

Each of these encodings can be seen as a randomly generated S-box (and
with high probability a non-linear one). If we see a table (or a group of tables)
as a mini cipher on their own, than these encodings are applied to the tables
to achieve confusion: it makes sure the relation between the input and output
of the tables are not related to the key bytes they are trying to hide. For a

Hgo f)(x) =g(f(2)).
2For each round we use different encodings, and the first encodings or a round (i.e. f; !
are the inverses of the last encodings from the previous round (i.e. fy).




single table the confusion effect is perfect, it leaks no information about the
key. You can see this by fixing an arbitrary table A, and check for a given key
byte if you can find encodings such that the table with these properties is equal
to A. Since there are such encodings for every key byte a table is perfectly
secure. This is called local security. However, even though a single table
leaks no information about the key, several tables together might leak other
information (i.e. about the encodings). Therefore we also want to achieve
diffusion: changing one bit of the input results in a change of approximately
half of the bits of the output.

2.3.2 Mixing Bijections

To achieve diffusion for the tables we apply additional functions: invertible
linear transformations, also called mizing bijections. We create such matrices
by filling a square matrix with random bits and repeat that until it is invertible
(a more sophisticated way is described by Xiao and Zhou [7]). After each of the
MixColumns operations we first multiply with a 32x32 bits mixing bijection M
before we apply the encodings and give it to the XOR tables. We also apply
another 8x8 bits mixing bijection L™ right after the encodings and before the
AddRoundKey operation in the Ty tables. We use the same matrix M for
the entire column (four per round) and we use a different matrix L~ for each
byte in the state matrix (sixteen per round). Note that the L™! matrices are
not the inverses of the matrix M, but they are separate mixing bijections.?

To undo the effect of the M multiplication after the XOR tables and to
apply the correct transformations for the L=! matrices, we create a new set of
tables. Because the input to these tables (the output from the XOR tables)
is 8 bits, and we want to multiply with a 32x32 bits matrix, we use the same
trick we used for the MixColumns operation in paragraph 2.2.3, except that
we split on the vector instead of the matrix and we multiply in GF(2) instead
of GF(28):

bo bo 0 0 0
b 0 b 0 0

—1 T I 1 1 1 —1
M by =M 0 e M 0 ®© M by e M 0
b3 0 0 0 b3

3The L~! matrices are called L~! (’L-inverse’) to follow the naming of the encodings in
figure 3, but this does not change anything as the inverse of an invertible linear transforma-
tion is again an invertible linear transformation.



Now if we define

M()_l(bO) = Mil : (b07 07 07 O)T7
Ml_l(bl) = M_l ’ (07 bla 07 O)T7
Mﬁl(bQ) =M. (07 07 b?a O)T7
Mi‘:l(bii) = M_1 ’ (07 07 07 b3>T
and
Lo 0 0 O
o L oo o
L 0 0 Ly O
0 0 0 Lj

we can create our new tables MB = go Lo M; ' o f~! where f~! and g
are internal encodings. Finally we add the required XOR tables to finish our
white-box implementation of AES.

2.3.3 External encodings

The input to the first round and the output of the last round of the implemen-
tation are not protected, therefore we add external encodings. These encodings
change the input and output, so we are no longer computing something equiv-
alent to AES. For external encodings F~! and G we compute G o AES o L.
These encodings have to be undone outside the white-box. One could, for ex-
ample, apply the input encodings on a server that sends the input and undo the
output encodings elsewhere in the application. Although applying or undoing
encodings elsewhere in the application does not add any theoretical security,
it makes sure that an attacker cannot isolate the white-box, but would have
to analyse the entire program.

The type of the external encodings is free to choose. In the original paper
the authors suggest 128x128 bits mixing bijections, which requite additional
tables to the network [2]. We could also use a series of parallel encodings
like we used for the internal encodings, or a combination of the two. In our
implementation for the demo in section 3 we chose to just x-or with a byte
array.

2.3.4 Overview

Here we give an overview of the four final types of tables with their definitions:

1. The Ty table. This table contains a key addition, a substitution and
a multiplication with the mix columns matrix. In the first round, the



input (8 bits) is encoded with an external encoding, in the other rounds
it is encoded with internal encodings and an 8x8 bits mixing bijection.
The output (32 bits) is encoded with a 32x32 bits mixing bijection and
internal encodings. There are 144 Ty-tables in total.

TYqyr(b) = g(M - vy, - (SubBytes o AddRoundKey’, , ., o L™" o f~1)(b))

. The T table. This table contains a key addition, a substitution and an-
other key addition. The input (8 bits) is encoded with internal encodings
and an 8x8 bits mixing bijection. The output (8 bits) is encoded with
an external encoding. In total there are 16 T-tables.

T.

x?y

(b) = (gexternal o AddRoundKeyxnyo o SubBytes o
AddRoundKey,, , g0 L™ o f~1)(b)

. The MB table. This table has no AES specific operations, but allows
the mixing bijections operations to be undone. Therefore the input (8
bits) is encoded with internal encodings. Then it applies two 32x32 bits
mixing bijections (the latter having four 8x8 bits mixing bijections on
its diagonal) and finally it applies internal encodings to the output (32
bits). There are 144 MB-tables in total.

MB,,,(b)=(goL,o le; o fﬁl)(b)

. The XOR table. This table contains the x-or operations needed to
merge the partial result of a matrix multiplication (either from the mix
columns operation or from a mixing bijection). The input (8 bits) and
output (4 bits) are encoded with internal encodings. In total there are
1728 XOR-tables.

XORyypi(a,b) = g(f(a)® f' (b))

In these formulas vy is the y-th column vector of the mix columns matrix, M
and L~! are randomly generated mixing bijections (resp. 32 and 8 bits) and
f~! and g represent a series of parallel randomly generated 4 bits bijections.

The flow of one byte through one of the internal rounds is shown in figure 4.

2.3.5 Implementation and performance

We have implemented this in Java, which caused an issue with using lookup
tables. The Java language specification requires the size of a method to be at
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Figure 4: The flow of a byte through the tables from an inner round.

most 64 KB. Because all lookup tables are implemented as a static array and
all static variables in one class count as one method, it would not compile. To
solve this we created a static class for every table.

The total size of all tables is 28-(144-4+16-1+144-4+41728-1) bytes ~ 741
KB. Java source code and Java byte code have a lot of overhead however. A
generated file with the source code for a white-box AES is approximately 6.8
MB (41279 lines of code), compared to approximately 10 KB of source code for
a straightforward implementation of AES. Compiled byte code of a white-box
AES is approximately 5 MB in size, in comparison with 7 KB for a normal
AES.
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Generating the code of a white-box is relatively fast; it takes just under a
second. Compiling this code to Java byte code however is quite slow; it takes
approximately 2.5 minutes to complete on our system.

Encrypting a single block takes approximately 6 seconds. This is mainly
because Java takes a long time to load all the tables in memory. Once it
has the tables in memory the execution is done in a matter of milliseconds.
Decrypting all the java byte code of the demo takes about 10 seconds.

Note that we ran these tests on a moderate laptop (it has a 2.50 GHz
Intel i5 Core processor) and we did not do any performance optimizations.
The implementation by Chow et al. [2] is about 10 times slower than a normal
AES implementation. This is still a major performance hit, but it is acceptable
in certain situations.

3 A ’software dongle’

As a proof of concept we created a white-box application to replace a dongle.
A dongle is a piece of hardware with a cryptographic algorithm inside. Dongles
are used by UL TS to license their software (by means of challenge-response
calls). The advantage of using hardware over traditional software applications
is that it is is infeasible to copy the dongle or to see what keys are used in the
cryptographic operations (it is cheaper to just buy new software).

To protect the software against copying, a hardware fingerprint of the
clients machine is sent to UL TS that will be embedded in the white-box.
The application itself does not depend on the machine, only the ’software
dongle’. This makes the installation convenient and adds the possibility to
run the software on another computer, by requesting a new ’software dongle’
as opposed to requesting an entire new software package.

This demo consists of three parts, the Generator, the ’software dongle’ and
the software itself. An overview of these parts is displayed in figure 5.

The Generator is the part that runs on a computer within UL TS and
is considered to be secure. It generates the white-boxes with the keys and
encodings. It also generates the challenges for the software and it encrypts the
Java byte code (with F40 AES;1 in ECB mode). The main reason to encrypt
the Java byte code is to ensure that an attacker must have access to a valid
‘software dongle’ in order to attack the software protection.

The ’software dongle’ contains two white-box AES implementations like
we described in section 2. The external encodings are created by applying a
x-or operation between the dongle id, the hardware fingerprint (only mixed in
Fg) and randomly generated bytes.

12
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Figure 5: An overview of the demo.

The Software represents the actual piece of software that is bought by
the customer. It contains the sophisticated logic of the software (in this case
a hello world application), a class to decrypt the other Java byte code files
using the dongle (White-box A) and two classes to manage random and hard-
coded challenges. The software sends these hard-coded challenges to the dongle
(white-box B) and verifies the response against hard-coded answers. At the
same time it sends random challenges to the dongle and ignores the response.
The purpose of these random challenges is to make it harder for a potential
eavesdropper to find out which challenges are used. We have to use hard-coded
challenges, because our software does not contain a white-box and therefore
cannot compute AFESp itself.

4 Vulnerabilities

An attacker might want to install his software on multiple machines without
purchasing extra licenses, or publish the software on the internet. We describe
five ways in which an attacker could achieve this: social engineering, hardware
spoofing, bypassing the white-box, code lifting and breaking the white-box.
We attacked our application by bypassing the white-box and a lifting the
code. Both were easy to do because the software was not obfuscated.

13



4.1 Social engineering

One example of a social engineering attack is when an attacker tells that his
computer has crashed and asks for a new (free of charge) ’software dongle’
for another machine. This is similar to asking for a new (hardware) dongle
because the old one is lost. In this paper we will not go into details on social
engineering issues, but these kind of attacks could be mitigated by blacklisting
the old machine (or the old (hardware) dongle).

4.2 Hardware spoofing

An attacker could spoof his hardware so that another machine will send the
same fingerprint as the original machine. While replacing or modifying the
actual hardware might be difficult and expensive to do, he can use a virtual
machine. Although there are ways to check if a program is running on a virtual
machine, that goes beyond the scope of this demo and we have ignored these
type of attacks.

4.3 Bypassing the white-box

To bypass the white-box, an attacker can catch the decrypted byte code of the
classes and then modify the application to ignore the outcome of the responses,
see figure 6 (left).

This attack is by far the easiest to do and very hard to prevent. It is
not specific to our white-box, as an attacker can do similar attacks when a
hardware dongle is used instead of a white-box implementation.

The downside of this attack is that for every software update the attacker
has to extract the new decrypted Java byte code files from the updated soft-
ware, modify them again and manually reinstall them at the other machines.
Since it is a lot of work to do this for every update, an attacker might prefer
to attack the white-box instead of the software.

4.4 Code lifting

To attack the white-box, an attacker could duplicate it, and change the en-
codings so that it gives the correct response for another machine. In this way
the attacker can abuse the encryption functionality without knowing the key,
this is known as code lifting (see the right side of figure 6).

To do this he needs to know the external encodings. Since some parts
of the encodings are pre-applied in the generator, he cannot find these parts
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anywhere in the code. However, the only thing he really needs to do is to undo
the hardware fingerprint of the original machine and re-apply the hardware
fingerprint of his new machine. He can find these hardware fingerprints because
they are added in the software. And since we only use a x-or operation to
create the external encodings, this is everything he needs. If the encodings are
created such that the order matters the attacker can still do this, because he
only needs to undo and redo the parts added after the hardware fingerprint
which have to be in the source code as well.

If the attacker can find the hardware fingerprints, he can also find the
hard-coded challenges. This means that he can easily build a new ’software
dongle’ that just returns the answer to these challenges and returns zeros for
all other challenges (the response will be ignored). He still needs to use the
first white-box to decrypt the Java byte code class files, but this white-box
is machine-independent, so it can be copied without a problem. Because in
practice the challenges are not updated, this is just as efficient. Note that this
last attack can also be applied against the hardware dongle.
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Figure 6: Attack the demo by bypassing the white-box (left) and code lifting
(right).

4.5 Break the white-box

The ultimate form of attacking the white-box is to recover the key. Once
an attacker has the key he can also recover the encodings and create a new
‘software dongle’. In comparison with the hardware dongle this is similar to
applying side channel attacks, which are either very expensive or not possible.
To break just this demo it will be a lot easier to apply code lifting attacks.
However, if an attacker can automate an attack against a white-box, he can
potentially crack more applications than just our demo. In practice different
variations are used to implement the white-box AES and a generic program
to break them all will be very hard to make. Still, it is interesting to see what
such an attack would look like.
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4.5.1 A square like attack

The ’square like’ attack was already found by Chow et al. [2]. It is inspired by
an attack on Square [11], which can also attack up to 6 rounds of AES [10]. To
apply it an attacker needs to remove the external encodings first. Additionally,
if Mixing Bijections are not used in the creation of the white-box, then this
attack can be applied at the inner rounds as well after a frequency analysis on
the nibble encodings [2, 1].

If there are no input encodings to the first round, than we can apply a
chosen plain-text attack, where our input will go directly to the AddRoundKey
step. Because the output is encoded, we cannot see much useful about two
different outputs, but we can see when two inputs have the same output.

Lets assume that we find two column values w = (wp, wy,ws, w3) and
x = (mo,x1,22,x3) that have a different input in all bytes, and the same
output in all but one of the bytes (say, the first byte). Because the output of
the last three bytes is the same, the x-or of the outputs is 0. So

0190 @ 02 41 @ 03-ys @ O1-y5 = 00

01-yo® 01 -y ® 02-yo® 03-y3 =00

03-90@ 01 -4, @ O1-yp @ 0255 = 00,
where y; = S(w; @ ki) ® S(x; ® k).

This is a system of linear equations, if we solve it we get:

yo = EC - y3
y1=9A - y3
Y2 = BT - y3

Now if we guess one key byte, the other three key bytes follow. As a result,
we can do a brute force search on 284 = 232 different keys. This of course is
under the assumption that we find such w and z. According to chow et al. [2]
we can find them with approximately 2'* one-round encryption steps.

4.5.2 The BGE attack

In 2005 Billet, Gilbert, and Ech-Chatbi published a cryptanalysis on the inner
rounds of the white-box AES. The attack will recover the key and the external
encodings in at most 2%° steps. For the details of the attack we refer to their
paper [4] and Muir’s tutorial [1]. The outline of the attack is:

1. Write an AES round as a system of equations. Represent one column of
an AES round with the function yo(xg, 21, T2, 73).
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2. Apply differential cryptanalysis; keep most variables constant and vary a
few. In this case, build functions for all values of z1: f,(x) = yo(z, b, 0,0),
with 0 < b < 256.

3. Consider all compositions: f5(z)o f3 ' (z) = Qo®.0Q~! (where Q is the
output encoding of a white-boxed table and @, an x-or operation with
some unknown constant c).

4. Remark that these functions form a group G = (GF(2%),0), with some
unknown base vectors (i.e. [y to §7) that span up G. Consider the
possibility of an isomorphism from G to GF(2).

5. We can make an isomorphism that maps known base vectors (i.e. e, ...,
e7). So there must exist some unknown affine function that transposes
between f3; and e;.

6. Now we can create a Q' = Q' o A (with A an unknown but affine
transformation).

7. Repeat this trick for the other columns and we can replace the in- and
output encodings for the next round to affine encodings (by applying
Q! to the input and next round’s Q' to the output).

8. Now our system of equations has become a system of linear equations
(with some constant translations), these are much easier to break.

In 2009 a generalized version of the BGE attack was published by Michiels
et al. [6]. They show that this technique can be used to break any substitution
linear-transformation (SLT) cipher (like AES) that uses a matrix with some
specific properties (unfortunately exactly those properties that make an SLT
cipher strong). The consequence of this result is that with the current tech-
niques we cannot create a secure white-box implementation of any currently
known secure ciphers. To get a secure white-box algorithm either new white-
box techniques have to be found, or a new block cipher should be designed
with white-box cryptography in mind.

5 White-box cryptography in practice
So far we have seen white-box cryptography being used in a DRM application

and some ways to circumvent or attack this application. But in what other
applications could it be used?
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5.1 Security goals

Before we answer this question we look at some possible goals or properties
we might want to achieve when applying white-box cryptography in practical
situations:

1.

Key protection. Key protection is the most basic property we want to
have. If we can’t protect the AES key we certainly won’t have any of
the other properties. Currently all academic white-box implementations
are broken, so we don’t have this property. However, we know of no
proprietary white-box that is broken up to the level of key recovery and
we also do not know what white-box implementations there may be in
the future, so we can still look at the other properties.

Non invertibility. The property of non invertibility means that given
a white-box decryption algorithm, an attacker cannot create the corre-
sponding encryption algorithm, or the other way around. In applications
such as our demo, this property is not important, while in some other ap-
plications this is essential (for example, when it is used as an asymmetric
algorithm). Inverting this AES implementation is not trivial because of
the encoded network of XOR tables, however, it is possible to do (it takes
40 - 232 steps). It is unknown however if white-box implementations of
other cryptographic algorithms can be impossible to invert. Note that if
invertibility is the only property you want, than you can create a white-
box implementation of RSA. Proprietary implementations of RSA exist,
though it is unknown how strong they are.

Non abuse-ability. With non abuse-ability we mean that an attacker
cannot isolate the cryptographic part and use that for his own means
(because why would an attacker want to recover the key if he already
has the decryption functionality). In white-box cryptography we try
to achieve this with the external encodings, so that an attacker needs
to reverse engineer the entire application (which can be protected with
obfuscation techniques) instead of just locating the white-box.

Non copy-ability. Non copy-ability means that an attacker cannot dupli-
cate a white-box implementation. In our demo we tried to achieve this
by binding it to a hardware id. However, these kind of hardware finger-
prints can always be spoofed (e.g. by using a virtual machine). Because
of the nature of software, this will always be an issue.

Traceability. With traceability we mean that if an attacker publishes
his key (or program that uses the key) than we can trace him and know
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where the leak originated. With unique keys this comes naturally (unless
traitors could work together to create new keys out of their own), but
even if keys are not unique, the external encodings used in the white-box
can still be used to trace the origin of the leak.

5.2 A view on some applications

The classical application of white-box cryptography is DRM. There are many
types of DRM; We have looked at licensing software, but it is also widely ap-
plied in the music and film industry, or in pay TV. In these applications it is
not such a problem if an attacker can use an already compromised machine,
but it is a problem is he can recover the keys and publish them to compromise
other machines. Since using secure hardware elements is often unrealistic or
too expensive in these situations, white-box cryptography is a good choice.
Even though the white-box implementations have not yet achieved the level of
security they aim to achieve, they are, when mixed with traditional obfuscation
techniques, a great step forwards (Schultz [8]). We see here that traditional
obfuscation and white-box cryptography go hand in hand. A white-box algo-
rithm alone can easily be abused if the external encodings are not obfuscated
throughout the rest of the program. Likewise traditional obfuscation tech-
niques fail to hide known constants or key bytes from memory allowing them
to be recovered without ever decompiling the obfuscated binary [9].

At UL TS we where curious if we can use white-box cryptography for
EMYV: secure payments. Can we stop using smart cards altogether and just
use our phone? To do that we would need to use our phone to perform a
cryptographic operation with a key that is hidden inside software (as opposed
to a key that is hidden in a secure element). There are several risks to this,
mainly because software can be duplicated. Instead of stealing the smart card,
an attacker can copy the app without the owner noticing it. Likewise, the pin
code is also easier to brute force, as there no longer is a fuse that blows if
the pin is tried too often. To do this, an attacker only has to publish one
popular app with a trojan and he can compromise millions of devices. One
can of course add a requirement for a password or fingerprint recognition, but
this could be attacked by intercepting system calls or registering key presses
(or the touch locations on the screen if the app doesn’t rely on the system
keyboard). Furthermore the profit an attacker can make of breaking EMV is
very high, which means that the fact that white-box cryptography is merely a
great step forwards and can still be broken is a big issue. Therefore we don’t
recommend relying on software for EMV.

What we see happening today however is that people can use their phone

19



(without a secure element) to make low value payments (up to 25 euro). This
is known as HCFE (Host Card Emulation) or cloud based payments. The idea
here is to get a set of secret tokens or keys from the internet with a limited
lifetime and use these with secret keys on the phone. Because an attacker can
only make low value payments, the potential profit is very small and not worth
a lot of time to break it. Here white-box cryptography could be used very well
to further strengthen the cryptographic operations.

6 Conclusion

We have seen a white-box implementation of AES-128 and used it to build
a proof of concept in which we replaced a hardware token with a white-box.
In terms of security both versions are comparable. Our white-box has the
disadvantage that it is bound to a single computer and it requires a new white-
box to move the software from one computer to another. On the other hand it
has the advantage that it can easily be deployed on a server, for which inserting
a dongle is not practical. Another serious disadvantage for our white-box is
the performance. It takes about 10 seconds to decrypt the Java byte code
which is way too long. Finally we have looked at other possible applications
of white-box cryptography including mobile payment.

An interesting future research project would be to strengthen the cloud
based payment solutions with white-box cryptography. And of course future
research is needed to study the design of a new block cipher that is designed
with white-box cryptography in mind, as it remains an open question whether
or not theoretically secure white-box implementations will ever exist.
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